The WANZ Guide to Window Installation

as described in E2/AS1 Amendment 7
The WANZ Guide to Window Installation

as described in

E2/AS1 Amendment 7

1 November 2017 Version 1.4

This guide also includes installation details for specific Altus NZ Ltd products: The Eurostacker®, Euroslider®, Foldback® Bifold, Top Hung Bifold and the CodeMark certified Smartfit® Window Technology.
Ver 1.3 - 1 December 2014

The WANZ Technical Committee have reviewed E2/AS1 Amendment 6 and agree that the erratum does not affect the content of this document.

Ver 1.4 - 1 November 2017

The WANZ Technical Committee have added details pertaining to the installation of full height windows and doors pushed up to the soffit lining.

The WANZ Technical Committee have reviewed E2/AS1 Amendment 7 and agree that the erratum does not affect the content of this document.
Contents

Overview

Objective

Scope

Opening Preparation

Cavity Construction

Supplementary Detail

Components

Typical Details

Page 5

Page 5

Page 5

Page 7

Page 11

Page 11

Page 37

Page 39
Direct Fixed Claddings

Step D1 – Sill Tray Flashing
Step D2 – Position the Unit
Step D2a – Position the Unit – Full Height
Step D3 – Fixing
Step D3a – Fixing – Full Height
Step D4 – Air Seal
Step D5 – Head Flashing

Components – Direct Fix Claddings

Typical Details

Bevel Back Weatherboards
Rusticated Weatherboards
Vertical Shiplap Weatherboards
Board & Batten Weatherboards
Fibre Cement Weatherboards
Vertical Profiled Metal
Fibre Cement Sheet

Altus NZ Ltd Specific Products

Eurosider®
Eurostacker®
Foldback® Bifold
Top Hung Bifold
Smartfit® Window Technology
Overview

In 2009 the Department of Building & Housing invited WANZ to become a part of a working group set up to assist in a technical review of E2/AS1. This was seen by WANZ as an opportunity to address some of the confusion being experienced within the wider building community through having two generic window installation systems available. The net result, in terms of window installation, was E2/AS1 Amendment 5 which effectively merged previous versions of the Acceptable Solution with WANZ WIS. There are some additional items included in the document, which will be covered off as a part of this guide.

Objective

The objective of this document is an attempt to offer a better understanding of window and door installation as described in E2/AS1 Amendment 7.

The details and drawings used within E2/AS1 to describe window and door installation are two dimensional, cross sectional details which show a required end result. However, often a more in-depth sequential approach might describe the process better to the end user. This is what WANZ have attempted to do with this document by providing a step by step guide to the details offered by this latest version of the Compliance Document E2/AS1.

Scope

Because this document is designed as a Guide to E2/AS1 Amendment 7, its scope is identical to that listed in Section 1 (Pg. 25) of the Acceptable Solution.

E2/AS1 Amendment 7 contains the details for a number of generic solutions covering a majority of the typical building situations encountered on building sites in New Zealand. Obviously, there are many more situations that are not covered within its pages. The details for these situations will need to be specifically designed to suit the conditions being encountered. However, the principles expressed within the document, and in these pages, will provide a good foundation for the development of specific details.
For the purpose of this guide it is assumed that the building designer has already worked through the Risk Matrix and selected an appropriate cladding option, either Cavity Construction or Direct Fixed cladding.

**Note:** There are a series of size limitations as expressed in Clause 9.1.10.1 Scope (Pg. 103)

Where your window or door unit exceeds the limitations set out within this clause, please contact your window supplier for alternative details.

### 9.1.10.1 Scope

This Acceptable Solution is limited to aluminium window and door joinery that:

a) Has horizontal window and door heads only

b) Has maximum frame dimensions of 5000 mm wide or 5000 mm high, and a maximum overall frame area, for any one frame, of 13.5 m², or

c) For sills to floor level, has maximum width of 6 m and maximum overall frame area is 16 m².
Opening Preparation

The preparation of the wall opening prior to the installation of the window or door is essentially the same regardless of cladding option. The following offers a *step by step guide* to the process.
Step P1 – Preliminary Check

Before proceeding with the installation and preparation of the wall underlay, the installer should examine and confirm that the sill trimmer is essentially level, straight and free of twist. It is particularly important that it is well secured and does not slope toward the interior of the building. If necessary, the sill trimmer should be planed to ensure it does not exhibit any of the above conditions.

The sill trimmer must be designed to comply with NZS3604.

Note: Projects within the new Extra High wind zone require the use of a Rigid Underlay in addition to and underneath a flexible wall underlay, except as noted in the attached comment.

This needs to be considered when sizing the windows.

9.1.7.2 Rigid wall underlays, in association with drained cavities (including direct fixed corrugated profiled metal), are required in Extra High wind zones. Refer to Table 3 and Table 23. Rigid underlays are also required to external walls of attached garages that are unlined. Refer Paragraphs 1.1.1 and 9.1.3.4 c). Rigid wall underlays shall be in accordance with Table 23, and shall:

a) Be minimum 7 mm H3 plywood, or 6 mm fibre cement sheet
b) Be installed with sheet edges fixed over solid framing
c) Be over-fixed with a flexible wall underlay from Table 23 and installed as in Paragraph 9.1.7.1

COMMENT:
Some proprietary systems may not require the addition of a flexible underlay.
Step P2 – Cut the Underlay

Clause 9.1.5 a) describes the application of a flexible wall underlay.

To achieve this, follow these steps;

a. Cut the building underlay at 45° away from each corner.

b. Fold the flaps tightly into the opening and secure to the framing on all sides.

c. Trim off excess underlay after fixing.

Note: Figures 72A & 72B do not show the inner extent of the flexible wall underlay. The industry trend has been to cut this off at the inner corner of the framing as wrapping around sometimes interferes with the internal linings. Ensure the underlay is fixed tightly to the framework.
Step P3 – Flexible Flashing Tape

After ensuring the flashing tape to be used meets the criteria set out in Clause 9.1.5 b), follow these steps to satisfy the clause;

a. Cut the flashing tape for the sill at least 200mm wider than the opening.

b. Fit the tape, as described in the manufacturers literature, with the inner edge of the tape flush with the inside line of the framing, so that it extends a minimum of 100mm up each jamb ensuring timber framing is covered.

c. Ensure the tape is securely adhered to the underlay on all surfaces and fits tightly into each of the corners.

d. Cut two more pieces of tape at least 200mm long and fit into each of the upper corners as described above ensuring timber framing is covered.

Note: Ensure all exposed timber is covered, particularly in the corners. This may mean the tape has to extend further than nominated.
Cavity Construction

Clause 9.1.10.2 c) & d) describes the basics of window installation for wall claddings over a cavity.

c) Window openings for wall claddings over drained cavities shall be as shown in Figure 72B. Note there shall be no sill flashing.
d) For cavity fixed claddings, windows and doors shall finish against the cladding, except for flat fibre cement and ply claddings that require a 5 mm stand-off to allow for sealant weather seals between facings and cladding – eg. Figure 116.

Note: The use of a sill tray with cavity construction should be avoided. Its use will impact on the airflow into the cavity around the window and therefore its ability to pressure equalise. If a sill tray is desired, then a Direct Fix type solution for the window installation must be created.

b) Claddings over a drained cavity shall have:
   iii) window sills as shown in Paragraphs 9.2 to 9.9, without sill flashings
**Step C1 – Sill Support Bar**

Clause 9.1.10.5 b) v) describes the requirements of the Sill Support bar in terms of compliance with E2/AS1. There are some important points to note:

a. Support is required on all window and door units with a trim opening over 600mm wide,

b. The sill support bar must comply with EM6, E2/VM1 & B2/AS1,

c. Must be installed prior to the window or door unit.

d. The bar must be fitted in a manner that does not trap water on the sill trimmer

The comment following Clause 9.1.10.5 b) v) makes reference to ensuring the support bar is appropriate for the application for which it is being used. The EM6 test will allow the calculation of an acceptable weight limit for the support mechanism being used and the size and frequency of the fixings required to achieve the support.

Clause 9.1.10.5 c) also makes this note regarding the design of the sill support bars.

**Note:** Selection of the appropriate sill support bar is important. Please refer below for a guide to the options offered by WANZ members.
Figure 72B shows the general arrangement of the sill for a window installed into wall claddings, over a cavity.

Note: Figure 72B indicates that the sill support bar may be up to 100mm short of the trim opening at either end. It is recommended that the bar is installed to the full width of the opening to ensure it picks up the window or door frame support blocks. However, in some cases the use of non-proprietary corner soakers may require shortening of the bar.
The WANZ sill support bars, as described on the Components page (Page 37) and below, offer not only support to the window or door unit, but also drainage and ventilation of the trim cavity. The WANZ bars have been tested to EM6 and have demonstrated compliance with E2/VM1. In order to comply with these documents, they must be used in a continuous length across the trim opening.

a. The sill support bar is positioned below the opening, and set so that the upper edge sits a minimum of 5mm above the sill trimmer.

The WANZ sill support bar is supplied with locator blocks which are a quick and easy method of setting the bar in the correct position.

The locator blocks are designed to be re-used but can remain if desired.

b. After fitting a locator block at each end of the bar, position it into the trim opening. Using a level find the high end of the bar and fix the bar in place. Now adjust the other end of the bar to level and fix this end.
Note: The WANZ sill support bars, as described on the Components page (Page 37) are designed to fit a number of different claddings and circumstances. Selection of the correct bar, and its installation, is important. Please refer to the following to assist in the selection.

Fixing Options;

i. The generic fixing method into timber is 10g x 50mm stainless steel screws, positioned at each end of the bar and at a maximum of 300mm centres between.

ii. When fixing to concrete, the Heavy-Duty bars must be used. The same screws and fixing centres, as noted above, apply but the screws would be driven into nylon plugs or similar.

iii. For concrete the screws may be substituted for 6mm masonry anchors, at the same centres. However, in order to achieve the required edge clearance that these fasteners require, the Heavy-Duty bar must be re-drilled to suit.
Step C1a – Sill Support – Full Height

For window or door units that extend to the floor there are two sill support bar options available;

a. Where the sill support bar is installed as described in Step C1 above, using the Heavy-Duty bar.
   The major difference here would be where the bar is being fitted to a concrete floor. In this case the fixing sizes and positions would be identical except that the screws would drive into nylon plugs or similar.
   If the installer prefers to use masonry anchors, these can be substituted as noted in vii) above.
   Regardless of fixing type, ensure edge clearances, as recommended by the anchor supplier, are observed.

b. Included in the WANZ Sill Support Bar range is a bar designed for situations where there is insufficient room to fit a standard bar, i.e. units fitted as an option over a masonry veneer rebate or those set over an enclosed deck.
   The full height bar is designed to be fixed vertically into the top of the floor / rebate instead of into the face of the floor.
   As with the standard bar it must be installed level. This may require packing between the substrate and the bar to ensure weight is adequately supported. For fixing type and centres refer above.
**Note:** Fixing holes into concrete should be pre-filled with sealant prior to the installation of the fixing as noted in Figure 17A.
**Note:** Figure 73D, describes an alternative sill support detail for masonry veneer, which includes a poured concrete extension to the slab edge under the window or door and uses a sill tray flashing as detailed for direct fixed cladding situations.
Step C2 – Position the Unit

a. Before positioning the window or door unit into the opening ensure that, where applicable, that the sill corners have been fitted with corner soaker as described in Clause 9.1.10.5 c).
Check with your window manufacturer regarding the types of corner soaker used with their systems and that they are indeed applicable.

d) Mitred aluminium window and door sills, for both cavity and direct fixed, shall have a corner soaker fitted to the back of the sill/jamb joint and installed at point of manufacture. The soaker will be designed to act as a secondary device to prevent water ingress to the building in support of the primary mitre seals. Soaker materials shall be either uPVC, aluminium, polypropylene, high impact styrene or other semi rigid moulded polymeric material.

b. Ensure the unit is positioned so that;

i) The unit is positioned 5mm forward of the exterior cladding line, as described in Clause 9.1.10.2 d),

d) For cavity fixed claddings, windows and doors shall finish against the cladding, except for flat fibre cement and ply claddings that require a 5 mm stand-off to allow for sealant weather seals between facings and cladding – eg, Figure 116.

ii) The interior linings finish in the correct positions,

iii) The unit is sitting correctly on the sill support bar,
iv) Once the installation has been completed, check that the required cover over the exterior cladding as described in Clause 9.1.10, has been achieved.

After installation, the flange forming the window or door facing shall have an overlap to the surrounding cladding material or associated back flashings of

a) For jamb – 10 mm minimum
b) For sills – 8 mm minimum.

Note: Traditionally a nominal clearance of 5mm is detailed between the window jamb liner and the framed opening. The purpose of this is i) to allow space for the application of an air seal and ii) to avoid water being drawn into or being held within the opening due to capillary action.

The industry now typically calls for an installation tolerance of 15mm (7.5mm each side) on the framed opening, to allow for flashing tapes etc.
Step C2a – Position the Unit – Full Height

Figure 17C, describes the sill details for full height window and door units for cavity construction. The positioning of the unit is essentially the same as described in Step C2 above.

Note: Ensure the correct sill support bar is selected for these details, as described on Pages 15 & 16, so that fixings are positioned appropriately.
Note: Some find the on-floor details described in Figure 17C to be undesirable. If so then a rebated sill detail will need to be designed for the situation. In this case the rebate becomes the threshold level, i.e. the floor level inside of the window or door is irrelevant to the Acceptable Solution.
Step C3 – Fixing

a. Insert flat packers between the wall framing and the window or door reveals at the head, sill and jambs at fixing points. **DO NOT use wedges.**

b. Fix off the unit as described in **Clause 9.1.10.8.**

9.1.10.8 Attachments for windows and doors

Install windows and doors using pairs of minimum 75 x 3.15 galvanised jolt head nails or 8 gauge x 65 mm stainless steel screws, through reveals into surrounding framing at:

a) Maximum 450 mm centres along sills, jambs and heads, and

b) Maximum 150 mm from reveal ends.

Install packers between reveals and framing at all fixing points, except between head reveals and lintels.

**Note:** This Clause describes the fixing method for typical windows and doors. Larger units or those subject to higher wind loads may require additional fixing. If in doubt, contact your window manufacturer to confirm.

c. After fixing the unit in place, remove the packers from the head of the unit to allow any potential settlement of the building structure.
**Step C3a – Fixing – Full Height**

For full height units fixed to concrete floors replace the nail fixings with 8g x 65mm screws driven into nylon plugs or similar.

If the installer prefers to use masonry anchors, these can be substituted as noted on Page 15. Regardless of fixing type, ensure edge clearances, as recommended by the anchor supplier, are observed.

**Note:** Fixing holes into concrete should be pre-filled with sealant prior to the installation of the fixing as noted in Figure 17A (Page 17).

For timber floors, ensure the screw fixing is positioned a minimum of 20mm from the edge of the joist. This may require re-drilling of the sill support bar.
Step C4 – Air Seal

The Air Seal is designed to hold pressure in the trim cavity to enable pressure equalisation to occur. Typically, the Air Seal is a low expansion polyurethane foam installed over a PEF backing rod, as described in Clause 9.1.6.

The detail drawings contained within E2/AS1 show the air seal as a single entity. Please note Clause 9.1.6 b).

9.1.6 Air seals

Window, door and other penetration openings shall be provided with flexible air seals to minimise the risk of airflows carrying water into the building wall. The air seal shall be:

a) Provided between the reveal or frame and the wrapped opening (for example of use, refer to Figure 81),

b) Installed over a closed cell polyethylene foam (PEF) backing rod, or similar

c) Made of:
   i) self-expanding polyurethane foam, or
   ii) sealant complying with:
      a. Type F, Class 20LM or 25LM of ISO 11600, or
      b. low modulus Type II Class A of Federal Specification TT-S-00230C.

Note: Clause 9.1.6 makes this comment regarding air seals.

COMMENT:

Some sealants can react with bitumen based flashing tape, preventing full curing of the sealant. Where necessary, consult sealant manufacturers for application requirements.

Backing rods are used for sealant and for self-expanding polyurethane foam as there is a danger foam will expand to the outside of the wall and form a moisture bridge to the interior.

For further information refer to ASTM C1330 for backing rod material performance.
Step C5 – Head Flashing

Clause 9.1.10.4 describes the basics of head flashings.

9.1.10.4 Head flashings

Head flashings shall be in accordance with Paragraph 4.6.1.6 and Table 7, unless specifically shown otherwise, and shall:

a) Direct water to the outside of the wall cladding, and

b) Finish to the window head with clearance dimensions shown in Figure 71.

d) For wall claddings on cavity walls:
   i) incorporate 10 mm turn-ups as stop-ends, terminating at the inside face of the cladding so they do not pass through the cladding, and
   ii) permit ventilation of the drained cavities above, by the installation of cavity base closers as shown in Figure 66.

e) For Very High and Extra High wind zones, have sealant installed between underside of head flashing and top edge of window head flange – refer Figure 71 (c).

COMMENT:
Stop-ends are useful to prevent water moving past the ends of head flashings. However, additional problems of weatherproofing occur where the stop-end penetrates the cladding.

Specifically, paragraphs d) and e) apply to cavity construction.

Detail a) from Figure 85, shows the typical head flashing set out and prescribed dimensions.
Table 7 describes the upstand cover required by window head flashings.

<table>
<thead>
<tr>
<th>Membrane roofs and decks Type</th>
<th>Description</th>
<th>Situation 1 (2) minimum mm</th>
<th>Situation 2 (3) minimum mm</th>
<th>Situation 3 (3a) minimum mm</th>
<th>Figure reference (as example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap under cladding above</td>
<td>115 min.</td>
<td>All (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head flashing slope</td>
<td>15° min.</td>
<td></td>
<td></td>
<td></td>
<td>Figure 81a</td>
</tr>
<tr>
<td>Lap under cladding above</td>
<td>35 mm min.</td>
<td></td>
<td>60 mm</td>
<td></td>
<td>Figure 81a</td>
</tr>
<tr>
<td>Anti-capillary gap to cladding</td>
<td>5 mm</td>
<td></td>
<td></td>
<td></td>
<td>Figure 81a</td>
</tr>
<tr>
<td>Total upstand</td>
<td>40 mm min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The most common form of window or door head flashing is the extruded aluminium version, chosen primarily because of its consistent dimension and ease of installation. Those supplied by WANZ members are available to suit a wide range of claddings. These extruded flashings are designed to provide a nominal 5mm gap between the back of the flashing and the face of the window.

With Amendment 7 to E2/AS1 the design of the vertical upstand of the flashing has been increased to 65mm to comply with Table 7 and Clause 4.5.1 2). However, these do not comply for use in an Extra High Wind Zone, unless they are provided with a hook or hem to the upper edge of the flashing.

4.5.1 Edge treatments for flashings

Flashings shall be to the dimensions shown throughout this Acceptable Solution.

Exposed bottom edges of flashings shall be folded to a kick-out or a bird’s beak as shown in Figure 5.

For Low, Medium, High and Very High wind zones, flashing upstands shall have either:

1) A hem or hook to Figure 5, with upstand dimensions as shown throughout the document, or

2) No hooks or hems, and flashing upstand dimensions increased by 25 mm beyond those shown.

For Extra High wind zones, hooks and hems shall be used, and flashing upstand dimensions increased by 25 mm beyond those shown in Table 7 or elsewhere in the document.
Note: E2/AS1 Amendment 7 does not prescribe the offset of the head flashing from the face of the window flange. As noted above WANZ members offer head flashings designed to provide a nominal 5mm gap between the flashing and the window is achieved, similar to that shown below the cladding. The gap helps to avoid capillary action drawing water over the head of the window.

It is industry standard to extend the length of the head flashing 20mm past each side of the window, i.e. window width +40mm. In cases where jamb scribes are used, these are considered as a part of the window width and therefore the +40mm is added to the overall scribe dimension.

This is described in each of the window details shown within E2/AS1 Amendment 7.

Because of the difficulty in folding extruded aluminium head flashings, the stop ends, described in Clause 9.1.10.4 d) i), can be supplied as an applied injection moulded plastic item which is fitted on site.
Figure 71, describes the general set out of the head flashing and the wall underlay options. Whilst these details are shown as direct fix situations the same will apply to cavity construction.

Note: Detail (c) shows sealant between the top of the window or door flange and the underside of the head flashing. Use of a closed cell foam tape in this case might simplify the application. The detail applies to Very High and Extra High wind zones only.
**Note:** Windows or doors that extend to the soffit do not require a head flashing but instead will have a trim fitted as shown in Figure 8A f).
Supplementary Detail 1

In some instances, where a window or door unit is to finish against the soffit of the building, then the Steps described in the preceding pages can be difficult to achieve. The following modifications to these Steps could be made to ease the installation process...

Detail 1.1 – Full Height to Soffit

Step C1b – Sill Support

The sill support bar options, for window or door units extending to the floor, are limited to only the face mounted Heavy-Duty bar, however its fitment to the slab varies from the steps described previously.

Rather than setting and levelling the platform of the sill support bar at 5mm above the floor level, the platform is set at the same height, as indicated by RLx in Detail 18. This means that the location brackets usually supplied with the sill support bar cannot be used to hold the bar whilst it is levelled.

Fixings etc. are as previously described in Step C1, Fixing Options, on Page 15.

Step C2b – Position the Unit

Positioning of the window or door unit is essentially as described in Steps C2 & C2a, on Pages 19 & 21 respectively, except as follows;
a. Check that the unit is sized so that the dimension from the underside of the sill reveal to the upper edge of the head facing, is a nominal 10mm less than the dimension from the floor to the underside of the soffit.

b. Position the unit into the opening resting on the floor/sill support bar platform.

c. Lift the unit so that there is a nominal 5mm gap (use a packer to set the gap) at the top of the window or door, between the upper edge of the facing and the underside of the soffit.

d. Pack the sill, ensuring that the packers extend across both the floor and the sill support bar platform.

Step C3b – Fixing

For full height units fixed to concrete floors replace the nail fixings with 8g x 65mm screws driven into nylon plugs or similar.

If the installer prefers to use masonry anchors, these can be substituted as noted, on Page 15. Regardless of fixing type, ensure edge clearances, as recommended by the anchor supplier, are observed.
**Step C4 – Air Seal**

Apply the Air Seal as described in Step C4 on Page 25.

---

**Step C5b – Head to Soffit**

After ensuring all surfaces are clean (and primed where necessary), seal the gap between the window or door facing and the soffit with a good quality MS sealant.

Step C5, from Page 26, describes the design and installation of the head flashing for a window or door unit. The primary function of any head flashing is to deflect any water falling or running from above away from a potential entry point, at the head of the unit. This is the first D (deflection) of the weathertightness principles.

![Diagram](image)

Note: In this case, where there is no falling/running water, and because of the impracticality of fitting a head flashing in this environment, it is the seal that protects the head from water ingress. This is described in Figure 8A f) of the Acceptable Solution.

Before proceeding, the building designer must satisfy themselves that the detail is robust enough to satisfy the conditions specific to their project.
Detail 1.2 – Part Height to Soffit

Step C1c – Sill Support

The sill support for window units sitting on a sill trimmer and extending to the soffit varies from the steps described previously.

Rather than setting and levelling the platform of the sill support bar at 5mm above the sill trimmer, the platform is set at the same height, as indicated by RLx in Detail 22. This means that the location brackets usually supplied with the sill support bar cannot be used to hold the bar whilst it is levelled.

Fixings etc. are as previously described in Step C1, Fixing Options, on Page 15.

Step C2c – Position the Unit

Positioning of the window unit is essentially as described in Steps C2 on Page 19, except as follows;

a. Check that the unit is sized so that the dimension from the underside of the sill reveal to the upper edge of the head facing, is a nominal 10mm less than the dimension from the floor to the underside of the soffit.
b. Position the unit into the opening resting on the floor/sill support bar platform.

c. Lift the unit so that there is a nominal 5mm gap (use a packer to set the gap) at the top of the window or door, between the upper edge of the facing and the underside of the soffit.

d. Pack the sill, ensuring that the packers extend across both the floor and the sill support bar platform.

---

**Step C3 – Fixing**

Fix the window as described in Step C3 on Page 23.

---

**Step C4 – Air Seal**

Apply the Air Seal as described in Step C4 on Page 25.

---

**Step C5c – Head to Soffit**

After ensuring all surfaces are clean (and primed where necessary), seal the gap between the window or door facing and the soffit with a good quality MS sealant.
Step C5, from Page 26, describes the design and installation of the head flashing for a window or door unit. The primary function of any head flashing is to deflect any water falling or running from above away from a potential entry point, at the head of the unit. This is the first D (deflection) of the weathertightness principles.

**Note:** In this case, where there is no falling/running water, and because of the impracticality of fitting a head flashing in this environment, it is the seal that protects the head from water ingress. This is described in Figure 8A f) of the Acceptable Solution.

**Before proceeding,** the building designer must satisfy themselves that the detail is robust enough to satisfy the conditions specific to their project.
WANZ Components – Cavity Construction

Components

Head Flashing

Material: Extruded Aluminium

*Note: Dimension varies with cladding type
Available in 5mm increments

WANZ Support Bar Selection

Fixing to Timber

Fixing to Concrete

Material: Extruded Aluminium
Punched drainage & fixing holes

WANZ Head Flashing End Cap

Material: Moulded Polypropylene

*Note: These parts form part of the window system and should be supplied by your window manufacturer.

WANZ Support Bar Location Bracket

Material: Moulded Polypropylene
Length: 60mm
Cavity Construction
Typical Details
Figure 73C: Masonry veneer window and door installation
Paragraphs 9.2.4, 9.2.6 and 9.2.9

- Masonry wall tie
- Head flashing turned into angle or flat steel lintel. Extend flashing 200 mm each side of opening
- Drainage holes in masonry veneer
- Steel lintel
- Sealant

(e) HEAD

- Temporary packers, if required, are to be removed after fixing
- Frame block
- Air seal
- Sill support bar
- Sill flashing with drip edge, extend 200 mm each side of window
- H3.2 timber kick-out fllet
- Masonry wall tie

(f) SILL

- Flexible flashing tape over wall underlay behind sill flashing
- Window sill, do not seal to masonry sill
- Masonry or tile sill, cantilevered or flush, with min. 15° slope. Refer Paragraph 9.2.6 e).

(g) JAMB

- Line of head and sill flashings extended 200 mm each side of opening
- Air seal
- Packers
- Jamb flashing
- Line of masonry wall tie
Figure 73D: Masonry veneer details
Paragraph 9.2.5

(h) MASONRY VENEER - DOOR SILL

(i) MASONRY VENEER - FLOOR REBATE DETAIL

(j) MASONRY VENEER - MASONRY BELOW GROUND
Figure 76: Windows and doors in stucco cladding
Paragraph 9.3.10, Figure 72B

Additional wall underlay from overlap above lapped over flashing
Stucco on rigid or non-rigid backing
Cavity base closure

Flashing lap min. 35 mm
20 mm drip
Bell out stucco to form drip with slope to underside

Head flashing with 15° slope and upstand each end

Line of jamb flashing
Frame block
Sill support bar
5 mm stop end to sill flashing
10° slope to sill flashing

Cavity spacers as required for cladding fixing
Stucco on rigid or non-rigid backing
Cavity battens

Flexible flashing tape over wall underlay

Air seal

Temporary packers if required are to be removed after fixing

(a) HEAD

(c) JAMB

(b) SILL

NOTE:
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Sill support bar required conforming with EM6 and Paragraph 9.1.10.5, refer Figure 72B.
(4) Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones.
Figure 85: Windows and doors for bevel-back weatherboards on cavity
Paragraph 9.4.7

(a) HEAD

- Additional wall underlay from overlap above lapped over flashing
- Bevel-back weatherboard cladding, block behind as necessary for support
- Cavity base closer positioned to give 15 mm min. drip edge to cladding
- 15 mm min.
- 10 mm min. joinery cover
- Head flashing with 15° fall
- Stoppers to head flashing to finish at back of cladding

NOTE:
1. Window profile to be selected to achieve cover shown in details.
2. Architraves are shown for consistency only, detail may be used with rebated liner.
3. Sill support bar required conforming with EM6 and Paragraph 8.1.10.5, refer Figure 72B.
4. Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones.

(b) STILL

- 8 mm min. cover
- Horizontal batten under window as necessary to suit profile
- Bevel-back weatherboard cladding
- Wall underlay and flexible flashing tape
- Cavity battens

(c) JAMB

- Air seal
- Packers
- Bevel-back weatherboard cladding
- Line of head flashing over
- 20 mm min. extension
- 10 mm min. cover

Scribe sealed to weatherboards
Figure 86: Windows and doors for rusticated weatherboards on cavity
Paragraph 9.4.7

Cavity battens

Additional wall underlay from overlap above lapped over flashing

Rusticated weatherboard

Head facing - optional

Stop ends to head flashing

NOTE: Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones

Head flashing with 15° fall

5 mm

10 mm min. cover to joinery

15 mm

(a) HEAD

Frame block

Sill support bar

8 mm min. cover

Rusticated weatherboard

NOTE:
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Sill support bar required conforming with EN6 and Paragraph 9.1.10.5, refer Figure 72B.
(4) Refer Figure 72B for wrapping of framed opening prior to window installation.
(5) Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones.

(b) SILL

Wall underlay and flexible flashing tape

Wall underlay dressed into opening with flexible flashing tape installed over underlay to corners at head

Cavity battens

Rusticated weatherboard

Scriber and plug to suit weatherboard profile, sealed to weatherboards

Line of head flashing over

20 mm min.

10 mm min. cover

(c) JAMB

Air seal

Packers
Figure 91: Windows and doors in fibre cement weatherboards on cavity
Paragraph 9.5.4.2

- Cavity batten
- Wall underlay dressed into opening with flexible flashing tape installed over underlay to corners at head
- Air seal
- Temporary packers if required are to be removed after fixing
- Additional wall underlay from overlap above lapped over flashing
- Fibre cement weatherboard
- Timber or fibre cement packer
- Sheet fixing nails
- Cavity base closer positioned to give 15 mm min. drip edge to cladding
- Stopends to head flashing

**NOTE:**
1. Window profile to be selected to achieve cover shown in details.
2. Architraves are shown for consistency only, detail may be used with rebated liner.
3. Sill support bar required conforming with EM6 and Paragraph 9.1.10.5, refer Figure 726B.
4. Refer Figure 726B for wrapping of framed opening prior to window installation.
5. Refer Figure 711 (c) for sealant at head for Very High and Extra High wind zones.

- Packsers
- Air seal
- Wall underlay and flexible flashing tape
- Packers
- Air seal
- Cavity battens
- Fibre cement weatherboard cladding
- Timber scriber
- Line of head flashing over

- 20 mm min.
- 10 mm min. cover
- 15 mm grip
- 5 mm cover
- 50 min. head flashing cover
- Head flashing with 15° fall

- Frame block
- Sill support bar
- 8 mm min. joinery cover to weatherboard
- Sheet fixing nails
- Fibre cement sheet
- Wall underlay
Figure 99: Windows and doors for horizontal profiled metal on cavity
Paragraph 9.6.9.7

(a) HEAD
- Additional wall underlay from overlap above lapped over flashing
- Screw fixing to stud through batten (crest or trough fixing)
- Cavity base closure positioned to give 15 mm min. drip edge to cladding
- 10 mm min. cover
- Head flashing with 15° slope
- Stopends to head flashing
- Line of jamb flashing
- Frame block
- Air seal
- Flexible flashing tape over wall underlay for full width/depth of sill and 50 mm down face of underlay

(b) SILL
- Line of cladding flattened under corrugation lap behind jamb flashing
- Aluminium window
  - 8 mm min. cover
  - 10° slope to sill flashing
  - End of sill flashing closed and scribed to suit cladding profile
- Rivet to secure sill flashing
- Screw fixing to stud
- Cavity spacers only as necessary for fixing

(c) JAMB
- Air seal
- Line of head flashing over
- Aluminium window
- Line of sill flashing below
- Continuous compressible foam strip seal
- Preformed jamb flashing

NOTE:
1. Window profile to be selected to achieve cover shown in details.
2. Architectures are shown for consistency only, detail may be used with rotated liner.
3. Stiff support bar required conforming with JAN and Paragraph 9.1.10.5, refer Figure 72B.
4. Refer Figure 72B for wrapping of framed opening prior to window installation.
5. Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones
Figure 116: Windows and doors for fibre cement sheet and flush-finished fibre cement on cavity

Paragraph 9.7.6

NOTE:
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Sill support bar required conforming with EM6 and Paragraph 9.14.5, refer Figure 72B.
(4) Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones.
Figure 128: Windows and doors in EIFS
Paragraph 9.9.9

NOTE:
1. Window profile to be selected to achieve cover shown in details.
2. Architraves are shown for consistency only, detail may be used with rebated liner.
3. Sill support bar required conforming with EM6 and Paragraph 9.1.10.5, refer Figure 72B.
4. Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones.

(a) HEAD

(b) SILL

(c) JAMB
Direct Fix Claddings

Clause 9.1.10.2 describes the basics of window installation for direct fixed wall claddings.

9.1.10.2 Treatment of opening

a) Treatment of the window openings for direct fixed wall claddings shall be as shown in Figure 72A.

b) For direct fixed claddings, windows and doors shall have a 5 mm stand-off of the flange to the cladding to allow for air intrusion to the trim cavity for pressure equalisation. Note that this gap is sealed or trimmed down the jambs, but left open along the sill.
Step D1 – Sill Tray Flashing

Clause 9.1.10.5 a) describes the requirements of the Sill Tray Flashing in terms of compliance with E2/AS1. The use of flat sill tray flashings is quite a departure from the previous sloping version. To compensate the design of the flashing has been reviewed. There are some important points to note:

a. The sill tray flashing is to extend beyond the inside line of the aluminium window or door frame, including the condensation channel.

b. The sill tray flashing is to have an 8mm minimum upstand to the inside edge.

c. The sill tray flashing is to have a minimum 35mm cover on the cladding and is to extend the full width of the trim opening.

d. The sill tray flashing requires forward sloping end dams.

e. The sill tray flashing is to extend the full width of the opening

The WANZ extruded aluminium sill tray flashings, are described on the Components page (Page 65) include each of the above features and also include a rear fixing tag to ease installation.

Also available is an injection moulded stop end which avoids the difficulties in folding extruded aluminium. The stop end is snapped off to the correct length and is sealed in place on to each end of the tray.
Figure 72A describes the general arrangement of the sill for a window installed into a wall with direct fixed claddings.

The method of construction is as follows;

a. Prepare the framed opening, by cutting and fixing the wall flexible underlay and applying the flexible flashing tapes, as described in Steps P1 through P3.
b. Install the full width sill tray flashing (and stop ends) into the trim opening level, straight and fitted 5mm short of each jamb, packing as required. Ensure that it does not slope toward the interior. At this stage the trim opening is considered between studs and does not include the jamb battens.

![Detail 28]

*Note:* The sill tray flashing is cut 10mm short to allow for the radius / tape build up in the corners of the opening. The tapes must be fitted tight into the corners.

c. Fix the sill tray flashing into the sill trimmer through the rear leg using either clouts or 8g SS screws positioned 150mm max from each end and at 450mm max centres between. **DO NOT fix forward of the upstand leg!!**

With some thicker claddings, the front edge of the sill tray flashing will require additional support. This is achieved through the use of an angle support fitted to the face of the sill trimmer **prior** to the installation of the flashing.

![Detail 29]

*Note:* It is important the angle support is installed level regardless of the line of the sill trimmer. It should be fixed with 10g SS screws positioned at each end and at 300mm max centres between.

d. In order to support the weight of the window or door frame adequately the unit must be blocked up off the sill tray flashing. If your window or door has not been fitted with proprietary frame blocks, then an aftermarket item will need to be sourced and applied in appropriate locations. Refer to your window manufacturer for details.

![Detail 30]
e. *Figure 72A* (shown on Page 51) describes the addition of full height battens to each jamb of the trim opening. These battens are fitted after all of the trim opening preparation has been completed, including flashing tape, sill tray flashings and end stops.

The battens are used as described in *Clause 9.1.8.4 f).*

`Jamb battens shall:
1) be nominal 20 mm (between limits of 18 mm and 25 mm in thickness), minimum 45 mm wide, and of timber complying with B2/AS1. Refer to Figure 72A.`

**Comment:** It would be good practice to bed the inner batten on sealant to help prevent / reduce air leakage around the primary air seal.

f. The cladding is now installed and must be notched around the sill tray flashing, and support angle where it is used.

**Note:** *It is important to discuss the building details, including the batten size, with your window manufacturer to ensure the window sizes are calculated correctly.*
Step D2 – Position the Unit

a. Before positioning the window or door unit into the opening ensure, where applicable, that the sill corners have been fitted with corner soaker as described in Clause 9.1.10.5 c). Check with your window manufacturer regarding the types of corner soaker used with their systems and that they are indeed applicable.

c. Mitred aluminium window and door sills, for both cavity and direct fixed, shall have a corner soaker fitted to the back of the sill/jamb joint and installed at point of manufacture. The soaker will be designed to act as a secondary device to prevent water ingress to the building in support of the primary mitre seals. Soaker materials shall be either uPVC, aluminium, polypropylene, high impact styrene or other semi rigid moulded polymeric material.

b. Ensure the unit is positioned so that;

i) The unit is positioned 5mm forward of the exterior cladding line, as described in Clause 9.1.10.2 b),

b) For direct fixed claddings, windows and doors shall have a 5 mm stand-off of the flange to the cladding to allow for air intrusion to the trim cavity for pressure equalisation. Note that this gap is sealed or trimmed down the jambs, but left open along the sill.

ii) The interior linings will finish in the correct positions,

iii) The unit is sitting correctly on the sill tray flashing,

iv) Once the installation has been completed, the required cover over the exterior cladding as described in Clause 9.1.10, has been achieved.

After installation, the flange forming the window or door facing shall have an overlap to the surrounding cladding material or associated back flashings of

a) For jambs – 10 mm minimum
b) For sills – 8 mm minimum.
Step D2a – Position the Unit – Full Height

Figure 17D, describes the sill details for full height window and door units. The positioning of the unit is essentially the same as described in Step D2 above.
**Note:** Some find the on-floor details described in Figure 17D to be undesirable. If so then a rebated sill detail will need to be designed for the situation. In this case the rebate becomes the threshold level, i.e. the floor level inside of the window or door is irrelevant to the Acceptable Solution.
Step D3 – Fixing

a. Insert flat packers between the wall framing and the window or door reveals at the head, sill and jambs at fixing points. **DO NOT use wedges.**

b. Fix off the unit as described in **Clause 9.1.10.8.**

9.1.10.8 Attachments for windows and doors
Install windows and doors using pairs of minimum 75 x 3.15 galvanised jolt head nails or 8 gauge x 66 mm stainless steel screws, through reveals into surrounding framing at:
  a) Maximum 450 mm centres along sills, jambs and heads, and
  b) Maximum 150 mm from reveal ends.
Install packers between reveals and framing at all fixing points, except between head reveals and lintels.

*Note: This Clause describes the fixing method for typical windows and doors. Larger units or those subject to higher wind loads may require additional fixing. If in doubt, contact your window manufacturer to confirm.*

c. After fixing the unit in place, remove the packers from the head of the unit to allow any potential settlement of the building structure.
Step D3a – Fixing – Full Height

For full height units fixed to concrete floors replace the nail fixings with 8g x 65mm screws driven into nylon plugs or similar.

If the installer prefers to use masonry anchors, these can be substituted as noted below. Regardless of fixing type, ensure edge clearances, as recommended by the anchor supplier, are observed.

Note: Fixing holes into concrete should be pre-filled with sealant prior to the installation of the fixing as noted in Figure 17A (Page 17).

Fixing Options;

i. The generic fixing method into timber is 8g x 65mm SS screws as described in Clause 9.1.10.8 above.

ii. When fixing to concrete the same screws and fixing centres apply but the screws would be driven into nylon plugs or similar.

iii. For concrete the screws may be substituted for 6mm masonry anchors, at the same centres. However, the required edge clearance that these fasteners require must be considered.

For timber floors, ensure the screw fixing is positioned a minimum of 20mm from the edge of the joist. This may require re-drilling of the sill support bar.
**Step D4 – Air Seal**

The Air Seal is designed to hold pressure in the trim cavity to enable pressure equalisation to occur. Typically, the Air Seal is a low expansion polyurethane foam installed over a PEF backing rod, as described in *Clause 9.1.6*.

### 9.1.6 Air seals

Window, door and other penetration openings shall be provided with flexible air seals to minimise the risk of airflows carrying water into the building wall. The air seal shall be:

a) Provided between the reveal or frame and the wrapped opening (for example of use, refer to Figure 81),

b) Installed over a closed cell polyethylene foam (PEF) backing rod, or similar

c) Made of:
   i) self-expanding polyurethane foam, or
   ii) sealant complying with:
      a. Type F, Class 20LM or 25LM of ISO 11600, or
      b. low modulus Type II Class A of Federal Specification TT-S-00230C.

Note: *Clause 9.1.6 makes this comment regarding air seals.*

**COMMENT:**

Some sealants can react with bitumen based flashing tape, preventing full curing of the sealant. Where necessary, consult sealant manufacturers for application requirements. Backing rods are used for sealant and for self-expanding polyurethane foam as there is a danger foam will expand to the outside of the wall and form a moisture bridge to the interior. For further information refer to ASTM C1330 for backing rod material performance.
Step D5 – Head Flashing

Clause 9.1.10.4 describes the basics of head flashings.

**9.1.10.4 Head flashings**

Head flashings shall be in accordance with Paragraph 4.6.1.6 and Table 7, unless specifically shown otherwise, and shall:

a) Direct water to the outside of the wall cladding, and

b) Finish to the window head with clearance dimensions shown in Figure 71.

c) For direct fixed claddings, have 50 mm bead of sealant installed between cladding and each end of the head flashing.

e) For Very High and Extra High wind zones, have sealant installed between underside of head flashing and top edge of window head flange – refer Figure 71 (c).

COMMENT:
Stopends are useful to prevent water moving past the ends of head flashings. However, additional problems of weatherproofing occur where the stopend penetrates the cladding.

Specifically, paragraphs c) and in some situations e) apply to direct fix construction.

Detail a) from Figure 81, shows the typical head flashing set out and prescribed dimensions.
Table 7 describes the upstand cover required by window head flashings.

<table>
<thead>
<tr>
<th>Membrane roofs and decks Type</th>
<th>Description</th>
<th>All (1)</th>
<th>Situation 1 (2) minimum mm</th>
<th>Situation 2 (3) minimum mm</th>
<th>Situation 3 (3a) minimum mm</th>
<th>Figure reference (as example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap under cladding above</td>
<td>115 min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eg Figure 81a</td>
</tr>
<tr>
<td>Heads</td>
<td>15° min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lap under cladding above</td>
<td>35 mm min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eg Figure 81a</td>
</tr>
<tr>
<td>Anti-capillary gap to cladding</td>
<td>5 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total upstand</td>
<td>40 mm min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The most common form of window or door head flashing is the extruded aluminium version, chosen primarily because of its consistent dimension and ease of installation. Those supplied by WANZ members are available to suit a wide range of claddings. These extruded flashings are designed to provide a nominal 5mm gap between the back of the flashing and the face of the window.

4.5.1 Edge treatments for flashings

Flashings shall be to the dimensions shown throughout this Acceptable Solution.

Exposed bottom edges of flashings shall be folded to a kick-out or a bird’s beak as shown in Figure 5.

For Low, Medium, High and Very High wind zones, flashing upstands shall have either:

1) A hem or hook to Figure 5, with upstand dimensions as shown throughout the document, or

2) No hooks or hems, and flashing upstand dimensions increased by 25 mm beyond those shown.

For Extra High wind zones, hooks and hems shall be used, and flashing upstand dimensions increased by 25 mm beyond those shown in Table 7 or elsewhere in the document.
Note: E2/AS1 Amendment 7 does not prescribe the offset of the head flashing from the face of the window flange. As noted above WANZ members offer head flashings designed to provide a nominal 5mm gap between the flashing and the window is achieved, similar to that shown below the cladding. The gap helps to avoid capillary action drawing water over the head of the window.

It is industry standard to extend the length of the head flashing 20mm past each side of the window, i.e. window width +40mm.

In cases where jamb scribes are used, these are considered as a part of the window width and therefore the +40mm is added to the overall scribe dimension.

This is described in each of the window details shown within E2/AS1 Amendment 7.

Clause 9.1.10.4 c) states;

c) For direct fixed claddings, have 50 mm bead of sealant installed between cladding and each end of the head flashing.
Figure 71, describes the general set out of the head flashing and the wall underlay options. Whilst these details are shown as direct fix situations the same will apply to cavity construction.

**Note:** Detail (c) shows sealant between the top of the window or door flange and the underside of the head flashing. Use of a closed cell foam tape in this case might simplify the application. The detail applies to Very High wind zones only.
**Note:** Windows or doors that extend to the soffit do not require a head flashing but instead will have a trim fitted as shown in Figure 8A f).

Refer to pages 31-36 for details relating to installation up to a soffit.
**WANZ Components – Direct Fix Claddings**

**Components**

**Head Flashing**

Material: Extruded Aluminium

*Note: Dimension varies with cladding type Available in 5mm increments*

**Sill Pans**

Material: Extruded Aluminium

**Support Angles**

Material: Extruded Aluminium

*Note: Dimension varies with cladding type*

**WANZ Sill Pan Stop End**

Material: Moulded Polypropylene

*Note: These parts form part of the window system and should be supplied by your window manufacturer.*
Direct Fix Claddings
Typical Details
Figure 81: Windows and doors for direct fixed bevel-back weatherboards
Paragraph 9.4.6

(a) HEAD

Wall underlay dressed into opening with flexible flashing tape installed over wrap to corners at head

Air seal

Additional wall underlay from overlap above lapped over flashing

Bevel-back weatherboard

5 mm

10 mm min. cover

50 mm long sealant strip at both ends of flashing. Refer Figure 71

Sil flashings to extend behind line of aluminium frame, with 8 mm min. upstand to back and sloping end dams. Refer Figure 72A

Frame block

(b) SILL

Air seal

Packers

Horizontal batten under window as necessary to suit profile

Bevel-back weatherboard

NOTE:
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Refer Figure 72A for wrapping of framed opening prior to window installation.

(c) JAMB

H 3.1 20mm jamb battens finish clear of sill flashing

Wall underlay dressed into opening with flexible flashing tape installed over underlay

Bevel-back weatherboard

Scriber to suit weatherboard profile, sealed to weatherboards

Line of head flashing over

Line of sill flashing under

Cut slot in cladding for sill flashing

20 mm min.

10 mm min. cover
Figure 82: Windows and doors for direct fixed rusticated weatherboards
Paragraph 9.4.6

Additional wall underlay from overlap above lapped over flashing
Rusticated weatherboard
Head facings optional
35 mm min. cover to flashing
10 mm min. joinery cover
50 mm long sealant strip at both ends of flashing. Refer Figure 71
Head flashing with 15° fall
Sill flashing to extend behind line of aluminium frame, with 8 mm min. upstand to back and sloping end dams. Refer Figure 72A
Frame block
8 mm min. joinery cover to flashing
35 mm min. flashing cover
Gap without seal
Rusticated weatherboard

NOTE:
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Refer Figure 72A for wrapping of framed opening prior to window installation.

Air seal
Temporary packers if required are to be removed after fixing

(a) HEAD

Air seal

8 mm min. packer

(b) SILL

Wall underlay

Flashing tape over wall underlay

H 3.1 20 mm jamb battens finish clear of sill flashing

(c) JAMB

Wall underlay dressed into opening with flexible flashing tape installed over underlay to corners at head

Rusticated weatherboard
Soffit and plug to suit weatherboard profile, sealed to weatherboards

20 mm min.
10 mm min. cover
**Figure 93:** Windows and doors for direct fixed vertical shiplap weatherboards

**Paragraph 9.4.6**

---

**HEAD**

- Wall underlay dressed into opening with flexible flashing tape installed over wrap to corners at head.
- Additional wall underlay from overlap above lapped over flashing.
- Vertical shiplap.
- 35 mm min. cover to flashing.
- 10 mm min. cover to joinery.
- 50 mm long sealant strip at both ends of flashing. Refer Figure 71.
- Head flashing with 15° fall.

**SILL**

- 8 mm min. packer.
- Air seal.
- Flashing tape over wall underlay.
- Wall underlay.
- Sill flashing to extend behind line of aluminum frame, with 8 mm min. upstand to back and sloping end dams. Refer Figure 72A.
- 8 mm min. joinery cover to flashing.
- 35 mm min. flashing cover.
- Gap without seal.
- Vertical shiplap.
- Wall underlay and flexible flashing tape.

**NOTE:**

1. Window profile to be selected to achieve cover shown in details.
2. Architraves are shown for consistency only, detail may be used with rebated liner.
3. Refer Figure 72A for wrapping of framed opening prior to window installation.

---

**JAMB**

- H 3.1 20mm jamb battens finish clear of all flashing.
- Wall underlay dressed into opening with flexible flashing tape installed over underlay to corners at head.
- Vertical shiplap.
- Cut slot at window for sill flashing.
- Continuous protective sealant.
- Foam bond breaker.
- 20 mm min. head flashing extension.

**ALTERNATIVES:**

1. If recess in boards occurs at window, fit closure piece.
2. Scribes or facing boards may be appropriate depending on board layout.
Figure 84: Windows and doors for direct fixed board and batten weatherboards
Paragraph 9.4.6

NOTE:
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Refer Figure 72A for wrapping of framed opening prior to window installation.

- Additional wall underlay from overlap above lapped over flashing
- Vertical board and batten
- Butt vertical cladding battens to horizontal cladding batten where used
- 35 mm min. cover to flashing
- 10 mm min. cover to joinery
- 50 mm long sealant strip at both ends of flashing. Refer Figure 71
- Head flashing with 15° fall
- Sill flashing to extend behind line of aluminum frame, with 8 mm min. upstand to back and sloping end dams. Refer Figure 72A
- Frame block
- 8 mm min. joinery cover to flashing
- 35 mm min. flashing cover
- Gap without seal
- Horizontal batten under window
- Board and batten cladding
- Flashing tape over wall underlay
- Wall underlay
- Air seal
- Temporary packers if required are to be removed after fixing
- 8 mm min. packer
- H 3.1 20mm jamb battens finish clear of sill flashing
- Wall underlay dressed into opening with flexible flashing tape installed over underlay to corners at head
- Packers
- Line of sill flashing under
- Part board to support batten
- Cut slot for sill flashing
- ALTERNATIVE: Slot may be appropriate depending on board layout
- Line of head flashing over
- Continuous protective sealant
- Foam bond breaker
- Batten (Note: Window width should match batten module to achieve a consistent batten pattern)
Figure 90: Windows and doors in fibre cement direct fixed weatherboards

**Paragraph 9.5.4.1**

**Figure 90:** Windows and doors in fibre cement direct fixed weatherboards

**Paragraph 9.5.4.1**

**NOTE:**
(1) Window profile to be selected to achieve cover shown in details.
(2) Architraves are shown for consistency only, detail may be used with rebated liner.
(3) Refer Figure 72A for wrapping of framed opening prior to window installation.

(a) HEAD
- Additional wall underlay from overlap above lapped over flashing
- Fibre cement weatherboard
- Timber or fibre cement packer
- Sheet fixing nails
- Head flashing min. 15° slope
- 35 mm min. cover
- 50 mm long sealant strip at both ends of flashing. Refer Figure 71

(b) SILL
- 8 mm min. packer
- Air seal
- Flashing tape over wall underlay
- Sill flashing to extend behind line of aluminium frame, with 8 mm min. upstand to back and sloping end dams. Refer Figure 72A
- Frame block
- Gap without seal
- 8 mm min. joinery cover to flashing
- 35 mm min. flashing cover
- Sheet fixing nails
- Wall underlay
- Fibre cement weatherboard

(c) JAMB
- H 3.1 20mm jamb battens finish clear of sill flashing
- Wall underlay dressed into opening with flexible flashing tape installed over underlay to corners at head
- Air seal
- Packers
- Line of sill flashing under
- Cut slot for sill flashing
- 20 mm min.
- 10 mm min. cover
- Line of head flashing over

Window Association of New Zealand
Page 72
Figure 95: Windows and doors for vertical profiled metal

Paragraph 9.6.8.6

NOTE:
1. Window profile to be selected to achieve cover shown in details.
2. Architraves are shown for consistency only, detail may be used with rebated liner.
3. Refer Figure 72A for wrapping of framed opening prior to window installation.
4. Refer Figure 100 for sketch of flashings.
5. Refer Figure 71 (c) for sealant at head for Very High and Extra High wind zones.
Figure 115: Windows and doors for direct fixed fibre cement sheet
Paragraph 9.7.6

(a) HEAD
- Additional wall underlay from overlap above lapped over flashing
- Fibre cement sheet
- Sheet fixing nails
- 50 mm strip of sealant at both ends of flashing
- 35 mm min. cover to flashing
- 5 mm gap
- 10 mm min. cover to joinery
- Head flashing with 15° slope

(b) SILL
- Sill flashing to extend behind line of aluminium frame, with 8 mm min. upstand to back and sloping end dams. Refer Figure 72A

NOTE:
1. Window profile to be selected to achieve cover shown in details.
2. Architraves are shown for consistency only, detail may be used with rebated liner.
3. Refer Figure 72A for wrapping of framed opening prior to window installation.

(c) JAMB
- H 3.1 20mm jamb buttons finish clear of sill flashing
- Packers
- Line of sill flashing under
- Cut slot for sill flashing
- Continuous protective sealant
- Foam bond breaker
- 20 mm min. cover
- 10 mm min. cover
Altus NZ Ltd Specific Products
Installation details

Installation details for: The Eurostacker®, Euroslider®, Foldback® Bifold and the CodeMark certified Smartfit® Window Technology.
Altus NZ Ltd is a Window Association of New Zealand member

**EUROSLIDER® - HEAD DETAIL**

![EUROSLIDER® - HEAD DETAIL](image1.png)

**EUROSLIDER® - SILL DETAIL**

![EUROSLIDER® - SILL DETAIL](image2.png)

**EUROSLIDER® - REBATED SILL DETAIL**

![EUROSLIDER® - REBATED SILL DETAIL](image3.png)

**EUROSLIDER® - JAMB DETAIL**

![EUROSLIDER® - JAMB DETAIL](image4.png)

**Method:**

1. Rip legs of angle to suit cladding thickness. Screw fix to front face of lintel.
2. Screw fix similar ripped angles to jamb stud work as per notes.
3. Fix selected support angle and sill flashing in place. Locate appropriate packers.
4. Position unit into trimmed opening and tack off through liners.
5. Screw fix off remainder of unit through reveals as detailed.

**Note:**

Use angles as shown prior to the building cladding being in place.

Refer the weather tightness details on the appropriate claddings page in the WANZ Manual.

Some thinner cavity claddings may need the wall framing packed to fit the long reach of the stacker door frame into the overall wall thickness.
**Eurostacker®**

**EUROSTACKER® - HEAD DETAIL**

- Head flashing (15° fall & 15mm min cover) Do not fit hard down onto frame.
- Foam tape
- Rip 331270 to suit cladding thickness & screw fix to Lintel. Fix frame to flat with 78784 Fixing Nut.
- Secure clip in extrusions with discrete 2x 6G screws. All frame penetrations to be sealed over.

**EUROSTACKER® - SILL DETAIL**

- Fixings to suit substrate at 450 ctrs Flat packers to support unit
- EuroStacker Sill Detail
- 78753 Corner Soaker
- WANZ Support Bar 331284
- Sill membrane

**EUROSTACKER® - JAMB DETAIL**

- Bevel-back Weatherboard
- Drill and 2x 8g Csk wood screws thru flat
- Air Seal to perimeter of trim cavity
- 331270 Flat-rip width to suit. Cut in multiples of 250 long. Fix at mid point of jamb near strike & at overlight transom (if any) with 4x 8g 35 wood screws.
- Pre fix 2x 8g Pan 13 screws
- Conceal screw through strike & self tap into flat (pilot hole). All frame penetrations to be sealed over.

**EUROSTACKER® - REBATED SILL DETAIL**

- NOTE: Rebate Depth and Height may vary from what is shown

**Method:**
1) Screw flat 331270 flush to underside of lintel with correct forward overhang. Check the building cladding is already in place prior to the frame being inserted.
2) Fix side flats either to jamb frames or jamb studwork as per notes.
3) Fix selected WANZ support bar in place and secure required packers.
4) Position unit into trimmed opening and 'tack off' through liners.
5) Screw fix off remainder of unit through reveals as detailed.

**Note:**
Use 331270 fixing flat support bar as shown when the building cladding is already in place prior to the frame being inserted.

Refer to the weather tightness details on the appropriate claddings page in the WANZ Manual.

Some thinner cavity claddings may need the wall framing packed to fit the long reach of the stacker door frame into the overall wall thickness.
Foldback® Bifold

**FOLDBACK® BIFOLD - HEAD DETAIL**

- Wanz Head Flashing
- End Dam
- Cladding: Weatherboard shown
- Head flashing: Do not fit hard down onto frame
- Foam tape
- Water resistant ‘Air Seal’ to perimeter
- Do not push gib hard into groove

**FOLDBACK® BIFOLD - SILL DETAIL**

- Support Bar
- Flat packers to support unit
- 12g ss fixings at 450 ctrs

**FOLDBACK® BIFOLD - JAMB DETAIL**

- Cavity Battens
- Flat packers to support unit
- Line of head flashing above
- Bevel-back weatherboard
- Scribe to suit weatherboard profile, and sealed to weatherboards
- Flexible flashing tape
- Water resistant ‘Air Seal’ to perimeter of trim cavity

**Foldback® Installation Tips.**

- Use Bifold fixing bracket 78616 or 78619 or solid blocking off the lintel frame where appropriate to suit the cladding. For brick veneer and EIFS this will definitely be required.

- The Foldback® needs to be installed with the jamb’s outer face within 15mm of the outer cladding face, so on brick veneer it will be out by the outer face of the brick. This must be explained as it will appear different to the other units in the houselot.

- The head must be fixed through the outer fixings. A second row of inner fixings through the reveal must be used as well.

- The head can be solid packed at the ends directly above the jambs but nowhere else as per standard bifolds to allow for later adjustment, if required.
Altus NZ Ltd Specific Products - Top Hung Bifold Cavity Construction Installation Details (Pacific Suite ranges)

**Top Hung Bifold**

**TOP HUNG BIFOLD - HEAD DETAIL**

- Cavity Battens
- Bevel-back weatherboard
- Approved tape &/or house wrap over cavity closer
- 73102 cavity closer
- Head flashing (15° fall & 10mm min cover) Don't fit hard down onto frame
- Cladding seal
- Foam tape
- 78616 Head bracket at 450ctr
- Double screw fix thru head at 450mm crs with 8g screws. This allows later adjustment for sagging lintels
- Do not push gib hard into groove
- Water resistant 'Air Seal' to perimeter of trim cavity
- No packers at head

**TOP HUNG BIFOLD - SILL DETAIL**

- Flat packers to support unit
- Sill membrane
- 12g ss fixings at 450 crts

**TOP HUNG BIFOLD - JAMB DETAIL**

- Water resistant 'Air Seal' to perimeter of trim cavity
- Flat packers to support unit
- Line of head flashing above
- Flexible flashing tape
- Bevel-back weatherboard
- Scribe to suit weatherboard profile, and sealed to weatherboards
- 10mm Min. Cover
Smartfit® Window Technology

Note: The following Smartfit® installation details are only a partial representation of the details available. For the full guide call 0800 397 263 or email technical@altus.co.nz to request a copy.
Step 1 - Preliminary check of trim opening

1.2 Check trim opening for level, plumb, twist and squareness. Check outer window mounting surface is free from any protrusions and misaligned timber.

1.3 The trimmer must be fixed as such to resist torsional loads placed upon it from the weight of the installed and glazed window.

1.4 Check concrete slab edge is smooth and even, devoid of spill and boxing ridges. Any substantial edge breakouts that could affect sill sealing must be reinstated.

1.1 Important note: The wall framing must at least be flush or protrude out over the floor edge. 5mm nominal is ideal.
STEP 2 - Wall underlay preparation

2.1 Cut the wall underlay at 45° away from each corner.
2.2 Fold flaps tightly into opening and secure on all sides.
2.3 Trim off excess after fixing.

The Smartfit window and door system can be used with rigid air barriers (RAB). The reveal depth is altered to suit and fixing screw length should be adjusted accordingly. No sill taping of the trim opening is required if using a RAB.

External sheet bracing to wall framing must leave an even mounting surface for the window or door to seat properly on all sides. This may require the sheet brace to run past window openings or stop sufficiently short to allow for fin fixing and taping to occur.

Fix the wall underlay to framing using approved fixings.
STEP 3 - Position unit in opening

3.1 Position unit into opening.

3.2 Push outer fixing flange hard against the framing ensuring it is evenly seated and devoid of twist. Minor shimming under outer fixing fin is permissible to eliminate twist or to position window accurately to the reveal wall board groove or architrave.

3.4 Use full depth rectangular packers between framing and reveal to level the unit if required. If the floor or trimmer is straight and level, the window or door may sit hard down.

3.5 Diagonally measure to check for square and pack reveals if required.

3.6 Fix off unit as described in Step 4

3.7 Remove any packers from head reveal area

3.8 Cladding fixing starts after window install.

Note; The remaining trim gap dimension between reveal and framing is not important.
STEP 4 - Fix off unit

4.1 Do not fix through any plastic parts.

4.2 Fixing requirements @ Head & Jambs through outer fin;
10g x 32 SS screws @ 300 ctrs and not more than 150mm from corners
Holes are pre machined in head and jambs for screw fixings.

4.3 Fixing requirements @ Sill.
10g x 32 SS screws @ 300 ctrs not more than 150mm from Corners.
Holes are pre machined in sill for fixings. Refer to subsequent details for timber or concrete sill fixing.

4.4 Reveal Fixing:
The reveal is not the primary means for attaching the window to the building. The frequency of reveal fixings and packers should follow good carpentry practice to prevent the reveal from being unduly flexible in service. Remove any head packers after fixing reveals.
If no head flashing is present, reveal fixings at the head are required in accordance with 4.5.
Sliding and hinged door jambs at lock points will require a positive reveal fixing. Pack between reveal and house framing and nail fix reveal to a suitable standard to resist jamb movement from potential lock loads.

4.5 Windows with head hard to soffit and no head flashing required (not shown);
Fixings: 2 off 75mm Jolt Head Nails @ 450ctrs and not more than 150mm from each end through reveal at head only. See IN-43 for example.

Note;
Before attempting to install a Smartfit window unit, installers are advised to familiarise themselves with the Smartfit window system components shown on Dwg. No’s IN-04 and IN-05.
STEP 4a - Fix off unit continued

4a.1 Do not fix through any plastic parts.

4a.2 Fixing requirements @ Head & Jambs through outer fin;

10g x 32 SS screws @ 300 ctrs and not more than 150mm from Corners.

Holes are pre machined in head and jambs for screw fixings.

Notes;
Screw positions can be optimised at time of manufacture to suit window size and windload. Screw fixing hole positions could differ from those specified in this guide.

Sliding and hinged door jambs at lock points will require a positive reveal fixing. Pack between reveal and house framing and nail fix reveal to a suitable standard to resist jamb movement from potential lock loads.

4a.3 Fixing requirements @ Sill.

10g x 32 SS screws @ 300 ctrs not more than 150mm from Corners.

Holes are pre machined in sill for fixings. Refer to subsequent details for timber or concrete sill fixing.

In some case top fixing through reveal or additional fixing tag up on top of floor will be required.

4a.4 Reveal Fixing:
The reveal is not the primary means for attaching the window to the building. The frequency of reveal fixings and packers should follow good carpentry practice to prevent the reveal from being unduly flexible in service. Remove any head packers after fixing reveals.
If no head flashing is present, reveal fixings at the head are required in accordance with 4a.5.

4a.5 Windows with head hard to soffit and no head flashing required (not shown);
Fixings: 2 off 75mm Jolt Head Nails @ 450ctrs and not more than 150mm from each end through reveal at head only. See IN-43 for example.
STEP 4b - Fix off unit continued

4b.1 For windows with head hard to soffit and no head flashing present (not shown); See specific detail on Dwg. No. IN-43.

NOTE: Heavy duty head flashing (shown N.T.S) is required for Bi-fold door units. See specific detail on Dwg. no. IN-53.

4b.2 Fixing requirements @Head & Jambs;
10g x 32 SS screws @ 300 ctrs and not more than 150mm from Corners.

4b.3 Note: Window reveal to building framing trim clearances are not important. 5mm nominal shown all round to allow for squaring unit.

Note: Use top row of holes for fixing into timber, Use bottom row for fixing into Concrete.

4b.4 FIXING REQUIREMENTS @ Sill.
10g x 32 SS screws @ 300 ctrs not more than 150mm from Corners.

4b.5 Reveal fixing:
*See note 4.4 on sheet IN-09

Minor shimming under outer fixing fin is permissible to eliminate twist or to position window accurately to the reveal wall board groove or architrave.

4b.6 Fixing requirements @ head & jambs.
10g x 32 SS screws @ 300 ctrs not more than 150mm from corners.
STEP 5 - Tape the fixing fin

5.1 Smartfit flashing tape to be fitted before fixing the cavity battens that are adjacent to the window.

5.2 Use only Smartfit 60mm wide flashing tape.

5.3 Half the tape (30mm) to cover the fixing fin and half (30mm) to cover the wall underlay. All fixings and unused fixing holes must be covered by tape (except sill fixing holes into concrete slab).

5.4 The ends of each preceding piece of tape should be fully covered by the subsequent piece.

5.5 Start at the sill - then jambs and lastly the top strip over the head flashing.

5.6 Additional wall underlay from overlap above lapped over head flashing and flashing tape.

5.7 It is permissible to fill the trim cavity between the window reveal and house framing with insulation material.
STEP 6 - Fix cavity battens (if required by cladding type)

6.1 Fix cavity battens in accordance with E2/AS1 or proprietary cladding system suppliers requirements to suit cladding type.

6.2 Cavity battens, notch and run over head flashing fin.

6.3 Cavity battens, notch and run over sill fixing fin.

6.4 Cavity battens on outer stud or as close to the window trim opening as possible. It is possible to have a reduced cavity batten immediately adjacent to window jamb on top of fixing fin.
STEP 7 - Fit cladding

In all cases, cladding is fitted after window installation. Sheet cladding products will need joins to allow cladding to be presented about a window after the window is in position.
STEP 7a - Fit cladding

Masonry veneer above window shown, example

- Masonry veneer lintel angle in masonry course (other options available)
- Masonry veneer cavity end dam component to be trimmed to back of, or bent around behind lintel angle as shown. Apply sealant to remaining gaps to form dam.
- Masonry veneer lintel angle should reference this surface of the plastic top hub but not bear loads on it
- No head flashing horns

REAR VIEW, FROM INSIDE, top left corner of window, house framing not shown.

- Internal timber reveal
- This surface against framing and wall underlay

FRONT VIEW, FROM OUTSIDE, top left corner of window, cladding and framing not shown

- Top hub
- Head flashing upstand
- Window jamb in Masonry veneer cavity
- Internal timber reveal

This surface against framing and wall underlay
**STEP 7b - Fit cladding**  
Weatherboard shown, example

The head flashing horns run in front of the cladding face. There is no saw cut required to let the head flashing horns into the cladding.

The scriber cap is loose and runs fore and aft in a track in the top hub. Once the weatherboards are installed, apply sealant between the scriber cap and weatherboard face prior to pushing the scriber cap home hard to the face of the weatherboard.

A small hanger coming out from under the scriber cap will rest on the face of the weatherboard. The finished scriber will trap this hanger in position. It is possible to trim this hanger back so as not to protrude out the side of the finished scriber.
STEP 7c - Fit cladding

The flat sheet type cladding that is cut up and over the top hub must be a neat fit to the side of the top hub with no more than 2mm side float.

In all cases, cladding is fitted after window installation. Sheet cladding products will need joins to allow cladding to be presented about a window after the window is in position.

The head flashing horns run in front of the cladding face. There is no saw cut required to let the head flashing horns into the cladding.

The scriber cap is adjustable and runs fore and aft in a track in the top hub. Once the flat sheet cladding has been installed, apply sealant between the scriber cap and cladding face prior to pushing the scriber cap home hard to the face of the cladding.

A small hanger coming out from under the scriber cap will rest on the face of the cladding. The finished scriber will trap this hanger in position. It is possible to trim this hanger back so as not to protrude out the side of the finished scriber.

The finished scriber will be fitted hard up under the top hub / scriber cap and seal all gap prior to paint.

Flat sheet cladding
Scriber cap
Hanger, hidden behind scriber

Flat sheet types shown, example